Bioinformatika

Bioinformatika : Perkembangan Ilmu Terkait Dan Penerapannya


Bioinformatika

Merupakan kajian ilmu yang memadukan disiplin biologi molekul, matematika dan, reknik informasi (TI). Ilmu ini didefinisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data data biologi molekul. Biologi molekul sendiri juga merupakan bidang interdisipliner, mempelajari kehidupan dalam level molekul.

Protein alignment

Mula-mula bidang kajian ini muncul atas inisiatif para ahli biologi molekul dan ahlistatistik, berdasarkan pola pikir bahwa semua gejala yang ada di alam ini bisadibuat secara artificial melalui simulasi dari data-data yang ada. Pada bidang Bioinformatika, data-data atau tindak-tanduk gejala genetika menjadi inti pembentukan simulasi.

Pada saat ini, Bioinformatika ini mempunyai peranan yang sangat penting, diantaranya adalah untuk manajemen data-data biologi molekul, terutama sekuen DNA dan informasi genetika. Perangkat utama Bioinformatika adalah software dandidukung oleh kesediaan internet.

Latar Belakang Sejarah Bioinformatika

Penetrasi Teknologi Informasi (TI) dalam berbagai disiplin ilmu telah melipat gandakan perkembangan ilmu bersangkutan. Berbagai kajian baru bermunculan, sejalan dengan perkembangan TI itu sendiri dan disiplin ilmu yang didukungnya. Aplikasi TI dalam bidang biologi molekul telah melahirkan bidang Bioinformatika.Kajian ini semakin penting, sebab perkembangannya telah mendorong kemajuan bioteknologi di satu sisi, dan pada sisi lain memberi efek domino pada bidang kedokteran, farmasi, lingkungan dan lainnya. Kajian baru Bioinformatika ini tak lepas dari perkembangan biologi molekul modern yang ditandai dengan kemampuan manusia untuk memahami genom, yaitu cetak biru informasi genetik yang menentukan sifat setiap makhluk hidup yang disandi dalam bentuk pita molekul DNA (asam deoksiribonukleat). Kemampuan untuk memahami dan memanipulasi kode genetik DNA ini sangat didukung oleh TI melalui perangkat perangkat keras maupun lunak. Hal ini bisa dilihat pada upaya Celera Genomics, perusahaan bioteknologi Amerika Serikat yang melakukan pembacaan sekuen genom manusia yang secara maksimal memanfaatkan TI sehingga bisa melakukan pekerjaannya dalam waktu yang singkat (hanya beberapa tahun), dibanding usaha konsorsium lembaga riset publik AS, Eropa, dan lain-lain, yang memakan waktu lebih dari 10 tahun. Kelahiran Bioinformatika modern tak lepas dari perkembangan bioteknologi di era tahun 70-an, dimana seorang ilmuwan AS melakukan inovasi dalam mengembangkan teknologi DNA rekombinan. Berkat penemuan ini lahirlah perusahaan bioteknologi pertama di dunia, yaitu Genentech di AS, yang kemudian memproduksi protein hormone insulin dalam bakteri, yang dibutuhkan penderita diabetes. Selama ini insulin hanya bisa didapatkan dalam jumlah sangat terbatas dari organ pankreas sapi. Bioteknologi modern ditandai dengan kemampuan pada manipulasi DNA. Rantai/sekuen DNA yang mengkode protein disebut gen. Gen ditranskripsikan menjadi mRNA, kemudian mRNA ditranslasikan menjadi protein. Protein sebagai produk akhir bertugas menunjang seluruh proses kehidupan, antara lain sebagai katalis reaksi biokimia dalam tubuh (disebut enzim), berperan serta dalam sistem pertahanan tubuh melawan virus, parasit dan lain-lain (disebut antibodi), menyusun struktur tubuh dari ujung kaki (otot terbentuk dari protein actin, myosin, dan sebagainya) sampai ujung rambut (rambut tersusun dari protein keratin), dan lain-lain. Arus informasi, DNA -> RNA -> Protein, inilah yang disebut sentral dogma dalam biologi molekul. Sekuen DNA satu organisme, yaitu pada sejenis virus yang memiliki kurang lebih 5.000 nukleotida/molekul DNA atau sekitar 11 gen, berhasil dibaca secara menyeluruh pada tahun 1977. Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982. Di Indonesia, ada Lembaga Biologi Molekul Eijkman yang terletak di Jakarta. Di sini kita bisa membaca sekuen sekitar 500 nukleotida hanya dengan membayar $15. Trend yang sama juga nampak pada database lain seperti database sekuen asam amino penyusun protein, database struktur 3D protein, dan sebagainya. Inovasi teknologi DNA chip yang dipelopori oleh perusahaan bioteknologi AS, Affymetrix di Silicon Valley telah mendorong munculnya database baru mengenai RNA. Desakan kebutuhan untuk mengumpulkan, menyimpan dan menganalisa data-data biologis dari database DNA, RNA maupun protein inilah yang semakin memacu perkembangan kajian Bioinformatika.

Definisi Bioinformatika

Secara umum, Bioinformatika dapat digambarkan sebagai segala bentuk penggunaan komputer dalam menangani informasi-informasi biologi. Dalam prakteknya, definisi yang digunakan oleh kebanyakan orang bersifat lebih terperinci. Bioinformatika menurut kebanyakan orang adalah satu sinonim darikomputasi biologi molekul (penggunaan komputer dalam menandai karakterisasi dari komponen- komponen molekul dari makhluk hidup).

Bioinformatika “klasik”

Sebagian besar ahli Biologi mengistilahkan ‘mereka sedang melakukan Bioinformatika’ ketika mereka sedang menggunakan komputer untuk menyimpan, melihat atau mengambil data, menganalisa atau memprediksi komposisi atau struktur dari biomolekul. Ketika kemampuan komputer menjadi semakin tinggi maka proses yang dilakukan dalam Bioinformatika dapat ditambah dengan melakukan simulasi. Yang termasuk biomolekul diantaranya adalah materi genetik dari manusia –asam nukleat– dan produk dari gen manusia, yaitu protein. Hal-hal diataslah yang merupakan bahasan utama dari Bioinformatika “klasik”, terutama berurusan dengan analisis sekuen (sequenceanalysis).

Definisi Bioinformatika menurut Fredj Tekaia dari Institut Pasteur [TEKAIA2004] adalah: “metode matematika, statistik dan komputasi yang bertujuan untuk menyelesaikan masalah-masalah biologi dengan menggunakan sekuen DNA dan asam amino dan informasi-informasi yang terkait dengannya.”

Dari sudut pandang Matematika, sebagian besar molekul biologi mempunyai sifat yang menarik, yaitu molekul-molekul tersebut adalah polymer; rantai-rantai yang tersusun rapi dari modul-modul molekul yang lebih sederhana, yang disebut monomer. Monomer dapat dianalogikan sebagai bagian dari bangunan, dimana meskipun bagianbagian tersebut berbeda warna dan bentuk, namun semua memiliki ketebalan yang sama dan cara yang sama untuk dihubungkan antara yang satu dengan yang lain.

Monomer yang dapat dikombinasi dalam satu rantai ada dalam satu kelas umum yang sama, namun tiap jenis monomer dalam kelas tersebut mempunyai karakteristik masing-masing yang terdefinisi dengan baik.

Beberapa molekul-molekul monomer dapat digabungkan bersama membentuk sebuah entitas yang berukuran lebih besar, yang disebut macromolecule. Macromolecule dapat mempunyai informasi isi tertentu yang menarik dan sifat-sifat kimia tertentu.

Berdasarkan skema di atas, monomer-monomer tertentu dalam macromolecule dari DNA dapat diperlakukan secara komputasi sebagai huruf-huruf dari alfabet, yang diletakkan dalam sebuah aturan yang telah diprogram sebelumnya untuk membawa pesan atau melakukan kerja di dalam sel.

Proses yang diterangkan di atas terjadi pada tingkat molekul di dalam sel. Salah satu cara untuk mempelajari proses tersebut selain dengan mengamati dalam laboratorium biologi yang sangat khusus adalah dengan menggunakan Bioinformatika sesuai dengan definisi “klasik” yang telah disebutkan di atas.

Bioinformatika “baru”

Salah satu pencapaian besar dalam metode Bioinformatika adalah selesainya proyek pemetaan genom manusia (Human Genome Project). Selesainya proyek raksasa tersebut menyebabkan bentuk dan prioritas dari riset dan penerapan Bioinformatika berubah. Secara umum dapat dikatakan bahwa proyek tersebut membawa perubahan besar pada sistem hidup kita, sehingga sering disebutkan –terutama oleh ahli biologi– bahwa kita saat ini berada di masa pascagenom.

Selesainya proyek pemetaan genom manusia ini membawa beberapa perubahan bagi Bioinformatika, diantaranya:

  • Setelah memiliki beberapa genom yang utuh maka kita dapat mencari perbedaan dan persamaan di antara gen-gen dari spesies yang berbeda. Dari studi perbandingan antara gen-gen tersebut dapat ditarik kesimpulan tertentu mengenai spesies-spesies dan secara umum mengenai evolusi. Jenis cabang ilmu ini sering disebut sebagai perbandingan genom (comparative genomics).
  • Sekarang ada teknologi yang didisain untuk mengukur jumlah relatif dari kopi/cetakan sebuah pesan genetik (level dari ekspresi genetik) pada beberapa tingkatan yang berbeda pada perkembangan atau penyakit atau pada jaringan yang berbeda. Teknologi tersebut, contohnya seperti DNA microarrays akan semakin penting.
  • Akibat yang lain, secara langsung, adalah cara dalam skala besar untuk mengidentifikasi fungsi-fungsi dan keterkaitan dari gen (contohnya metode yeast twohybrid) akan semakin tumbuh secara signifikan dan bersamanya akan mengikuti Bioinformatika yang berkaitan langsung dengan kerja fungsi genom (functional genomics). Akan ada perubahan besar dalam penekanan dari gen itu sendiri ke hasil-hasil dari gen. Yang pada akhirnya akan menuntun ke: usaha untuk mengkatalogkan semua aktivitas dan karakteristik interaksi antara semua hasil-hasil dari gen (pada manusia) yang disebut proteomics; usaha untuk mengkristalisasi dan memprediksikan struktur-struktur dari semua protein (pada manusia) yang disebut structural genomics.

Apa yang disebut orang sebagai research informatics atau medical informatics, manajemen dari semua data eksperimen biomedik yang berkaitan dengan molekul atau pasien tertentu –mulai dari spektroskop massal, hingga ke efek samping klinis—akan berubah dari semula hanya merupakan kepentingan bagi mereka yang bekerja di perusahaan obat-obatan dan bagian TI Rumah Sakit akan menjadi jalur utama dari biologi molekul dan biologi sel, dan berubah jalur dari komersial dan klinikal ke arah akademis.

Dari uraian di atas terlihat bahwa Bioinformatika sangat mempengaruhi kehidupan manusia, terutama untuk mencapai kehidupan yang lebih baik. Penggunaan komputer yang notabene merupakan salah satu keahlian utama dari orang yang bergerak dalam TI merupakan salah satu unsur utama dalam Bioinformatika, baik dalam Bioinformatika “klasik” maupun Bioinformatika “baru”.

Cabang-cabang Yang Terkait Dengan Bioinformatika


Dari pengertian Bioinformatika baik yangklasik maupun baru, terlihat banyak terdapat cabang-cabang disiplin ilmu yang terkait dengan Bioinformatika –terutama karena Bioinformatika itu sendiri merupakan suatu bidang interdisipliner–. Hal tersebut menimbulkan banyak pilihan bagi orang yang ingin mendalami Bioinformatika. Di bawah ini akan disebutkan beberapa bidang yang terkait dengan Bioinformatika :

ؠؠBiophysics

Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics. Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society).

Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun, secara langsung disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.

Ø Computational Biology

Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup penting dalam computational biology, namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit.

Tidak semua dari computational biology merupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.

Ø Medical Informatics

Menurut Aamir Zakaria [ZAKARIA2004] Pengertian dari medical informatics adalah “sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritmauntuk meningkatkan komunikasi, pengertian dan manajemen informasimedis.

Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih “rumit” –yaitu informasi dari sistem-sistem super selular,tepat pada level populasi—di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular.

Ø Cheminformatics

Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference).Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini.

Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obat- obatan hingga sekarang –meskipun terlihat aneh–. Cara untuk menemukandan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimia yang intensif dan lambat. Sampai beberapa waktu yang lalu, disainobat dianggap harus selalu menggunakan kerja yang intensif, proses uji dan gagal (trial-error process). Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponen- komponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia dan ahli biokimia. Penghargaan untuk menghasilkan obat yang dapat dipasarkan secara lebih cepat sangatlah besar, sehingga target inilah yang merupakan inti dari cheminformatics.

Ruang lingkup akademis dari cheminformatics ini sangat luas. Contoh bidang minatnya antara lain: Synthesis Planning, Reaction and Structure Retrieval, 3-D Structure Retrieval, Modelling, Computational Chemistry, Visualisation Tools andUtilities.

Ø Genomics

Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecualidalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisaatau membandingkan seluruh komplemen genetik dari satu spesies atau lebih.Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.

Ø Mathematical Biology

Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripada computational biology dengan Bioinformatika. Mathematical biology jugamenangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu di implementasikan dalam software maupun hardware. Bahkan metode yang dipakai tidak perlu “menyelesaikan” masalah apapun; dalam mathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelas umum tertentu.

Menurut Alex Kasman [KASMAN2004] : “Secara umum mathematicalbiology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidakperlu berguna dalam menganalisis data yang terkumpul.”.

Ø Proteomics

Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dari protein-protein yang tersusun (encoded) oleh genom. Ilmu yang mempelajari proteome, yang disebut proteomics, pada saat ini tidak hanya memperhatikan semua protein di dalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari protein-protein dan kompleks-kompleks orde tingkat tinggi dari protein, dan mengenai masalah tersebut hampir semua pasca genom.

Michael J. Dunn [DUNN2004], Pemimpin Redaksi dari Proteomics mendefiniskan kata “proteome” sebagai: “The PROTEin complement of thegenOME“. Dan mendefinisikan proteomics berkaitan dengan: “studi kuantitatifdan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri“. Yaitu: “sebuah antarmuka antara biokimia protein dengan biologimolekul“.

Mengkarakterisasi sebanyak puluhan ribu protein-protein yang dinyatakan dalam sebuah tipe sel yang diberikan pada waktu tertentu –apakah untuk mengukur berat molekul atau nilai-nilai isoelektrik protein-protein tersebut– melibatkan tempat penyimpanan dan perbandingan dari data yang memiliki jumlah yang sangat besar, tak terhindarkan lagi akan memerlukan Bioinformatika.

Ø Pharmacogenomics

Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologipada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika,atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnose ( kemungkinan untuk mengejar target potensial terapi kanker ).

Istilah pharmacogenomics digunakan lebih untuk urusan yang lebih “trivial” — tetapi dapat diargumentasikan lebih berguna– dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi dan Genetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.

Ø Pharmacogenetics

Tiap individu mempunyai respon yang berbeda-beda terhadap berbagai pengaruh obat; sebagian ada yang positif, sebagian ada yang sedikit perubahan yang tampak pada kondisi mereka dan ada juga yang mendapatkan efek samping ataureaksi alergi. Sebagian dari reaksi-reaksi ini diketahui mempunyai dasar genetik.  Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dariprofil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan. Secara menakjubkan pendekatan tersebut telah digunakan untuk “menghidupkan kembali” obat-obatan yang sebelumnya dianggap tidak efektif, namun ternyata diketahui manjur pada sekelompok pasien tertentu. Disiplin ilmu ini juga dapat digunakan untuk mengoptimalkan dosis kemoterapi pada pasien-pasien tertentu. Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan kesehatan.

Program-program Bioinformatika

Sehari-harinya bionformatika dikerjakan dengan menggunakan program pencari sekuen (sequence search) seperti BLAST, program analisa sekuen (sequenceanalysis) seperti EMBOSS dan paket Staden, program prediksi struktur seperti THREADER atau PHD atau program imaging/modelling seperti RasMol danWHATIF.

Ø Basis data sekuens biologis

Sesuai dengan jenis informasi biologis yang disimpannya, basis data sekuens biologis dapat berupa basis data primer untuk menyimpan sekuens primer asam nukleat maupun protein, basis data sekunder untuk menyimpan motif sekuens protein, dan basis data struktur untuk menyimpan data struktur protein maupun asam nukleat.

Basis data utama untuk sekuens asam nukleat saat ini adalah GenBank(Amerika Serikat), EMBL (Eropa), dan DDBJ(en) (DNA Data Bank of Japan, Jepang). Ketiga basis data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing basis data. Sumber utama data sekuens asam nukleat adalah submisi langsung dari periset individual, proyek sekuensing genom, dan pendaftaran paten. Selain berisi sekuens asam nukleat, entri dalam basis data sekuens asam nukleat umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan pustaka yang berkaitan dengan sekuens asam nukleat tersebut.

Sementara itu, contoh beberapa basis data penting yang menyimpan sekuens primer protein adalah PIR (Protein Information Resource, Amerika Serikat),Swiss-Prot (Eropa), dan TrEMBL (Eropa). Ketiga basis data tersebut telah digabungkan dalam UniProt (yang didanai terutama oleh Amerika Serikat). Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang umumnya berisi penjelasan mengenai fungsi protein tersebut.

  • BLAST (Basic Local Alignment Search Tool) merupakan perkakas bioinformatika yang berkaitan erat dengan penggunaan basis data sekuens biologis. Penelusuran BLAST (BLAST search) pada basis data sekuens memungkinkan ilmuwan untuk mencari sekuens asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna misalnya untuk menemukan gen sejenis pada beberapa organisme atau untuk memeriksa keabsahan hasil sekuensing maupun untuk memeriksa fungsi gen hasil sekuensing. Algoritma yang mendasari kerja BLAST adalah penyejajaran sekuens.
  • PDB (Protein Data Bank, Bank Data Protein) adalah basis data tunggal yang menyimpan model struktural tiga dimensi protein dan asam nukleat hasil penentuan eksperimental (dengan kristalografi sinar-X, spektroskopi NMR dan mikroskopi elektron). PDB menyimpan data struktur sebagai koordinat tiga dimensi yang menggambarkan posisi atom-atom dalam protein ataupun asam nukleat.

Teknologi Bioinformatika Secara Umum

Pada saat ini banyak pekerjaanBioinformatika berkaitan denganteknologi database. Penggunaan database ini meliputi baik tempat penyimpanan database “umum” seperti GenBank atau PDB maupun database “pribadi”, seperti yangdigunakan oleh grup riset yang terlibatdalam proyek pemetaan gen atau database yang dimiliki oleh perusahaan-perusahaan bioteknologi. Konsumen dari data Bioinformatika menggunakan platform jenis komputer dalam kisaran: mulai dari mesin UNIX yang lebih canggih dan kuat yang dimiliki oleh pengembang dan kolektor hingga ke mesin Mac yang lebih bersahabat yang sering ditemukan menempati laboratorium ahli biologi yang tidak suka komputer.

Database dari sekuen data yang ada dapat digunakan untuk mengidentifikasi homolog pada molekul baru yang telah dikuatkan dan disekuenkan di laboratorium. Dari satu nenek moyang mempunyai sifat-sifat yang sama, atau homology, dapat menjadi indikator yang sangat kuat di dalam Bioinformatika.

Setelah informasi dari database diperoleh, langkah berikutnya adalah menganalisa data. Pencarian database umumnya berdasarkan pada hasil alignment/pensejajaran sekuen, baik sekuen DNA maupun protein. Kegunaan dari pencarian ini adalah ketika mendapatkan suatu sekuen DNA/protein yang belum diketahui fungsinya maka dengan membandingkannya dengan yang ada dalam database bisa diperkirakan fungsi daripadanya. Salah satu perangkat lunak pencari database yang paling berhasil dan bisa dikatakan menjadi standar sekarang adalah BLAST ( Basic Local Alignment Search Tool ) yang merupakan program pencarian kesamaan yang didisain untuk mengeksplorasi semua database sekuen yang diminta, baik itu berupa DNA atau protein. Program BLAST juga dapat digunakan untuk mendeteksi hubungan di antara sekuen yang hanya berbagi daerah tertentu yang memiliki kesamaan.

Bioinformatika dan kegunaannya untuk mendiagnosa penyakit baru

Studi Kasus : Teknologi Real Time- PCR sebagai teknologi diagnosa kasus SARS

Permasalahan :

Pada kasus SARS, gejala yang muncul mirip dengan gejala flu, sehingga dari gejala saja tidak bisa dibedakan apakah dia mengidap SARS atau mengidap flu.

Diagnosa ini penting karena akan menentukan tingkat keganasan suatu agent yang akan mempengaruhi kebijakan yang diambil terhadap penyakit tersebut. Adabeberapa cara untuk diagnosa suatu penyakit. Diantaranya isolasi agent penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan dari infeksi dengan teknik enzyme-linked immunosorbent assay (ELISA), dan deteksi gen dari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR). Isolasi agent pembawa penyakit memerlukan waktu yang lama. Teknik ELISA bisa dilakukan dalam waktu yang pendek, namun untuk tiap-tiap penyakit kita harus mengembangkan teknik tersebut terlebih dahulu. Untuk pengembangannya ini memerlukan waktu yang lama. Yang banyak dan lazim dipakai saat ini adalah teknik PCR.

Teknik ini simpel, praktis dan cepat. Yang penting dalam teknik PCR adalah design primer untuk amplifikasi DNA. Untuk mendesign primer ini diperlukan data sekuen dari genom agent yang bersangkutan dan software seperti yang telah diuraikan di atas. Di sinilah Bioinformatika memainkan peranannya. Untuk agent yang mempunyai genom RNA, harus dilakukan reverse transcription (proses sintesa DNA dari RNA) terlebih dahulu dengan menggunakan enzim Reverse transcriptase.

Setelah DNA diperoleh baru dilakukan PCR. Dua step reverse transcription dan PCR ini bisa dilakukan sekaligus dan biasanya dinamakan RT-PCR. Karena PCR ini hanya bersifat kualitatif, sejak beberapa tahun yang lalu telah dikembangkan teknik Real Time PCR yang bersifat kuantitatif. Dari hasil Real Time PCR ini bisa ditentukan kuantitas suatu agent di dalam tubuh seseorang, sehingga bisa dievaluasi tingkat emergensinya. Pada Real Time PCR ini selain primer diperlukan probe yang harus didesign sesuai dengan sekuen agent yang bersangkutan. Di sini juga diperlukan software atau program Bioinformatika. Untuk penyakit SARS sendiri sekarang telah tersedia kit RT-PCR yang dikembangkan oleh Takara Bio Inc., dengan nama komersial CycleaveRT-PCR SARS virus Detection Kit. Selain itu Roche Diagnostics juga juga tengah mengembangkan kit untuk deteksi virus SARS. Keberhasilan pengembangan kit ini tidak terlepas dari didorong kemajuan Bioinformatika.

Analisis klastering ekspresi gen pada kanker payudara

Ketersediaan database dasar (DNA, protein) yang bersifat terbuka/gratis merupakan peluang besar untuk menggali informasi berharga daripadanya. Database genom manusia sudah disepakati akan bersifat terbuka untuk seluruh kalangan, sehingga dapat digali/diketahui kandidat-kandidat gen yang memiliki potensi kedokteran/farmasi. Dari sinilah Indonesia dapat ikut berperan mengembangkan Bioinformatika. Kerjasama antara peneliti bioteknologi yang memahami makna biologis data tersebut dengan praktisi TI seperti programmer, dan sebagainya akan sangat berperan dalam kemajuan Bioinformatika Indonesia nantinya.

Ø Penerapan Bioinformatika di Indonesia

Sebagai kajian yang masih baru, Indonesia seharusnya berperan aktif dalam mengembangkan Bioinformatika ini. Paling tidak, sebagai tempat tinggal lebih dari 300 suku bangsa yang berbeda akan menjadi sumber genom, karena besarnya variasi genetiknya. Belum lagi variasi species flora maupun fauna yang berlimpah.

Memang ada sejumlah pakar yang telah mengikuti perkembangan Bioinformatika ini, misalnya para peneliti dalam Lembaga Biologi Molekul Eijkman. Mereka cukup berperan aktif dalam memanfaatkan kajian Bioinformatika. Bahkan, lembaga ini telah memberikan beberapa sumbangan cukup berarti, antara lain :

 Deteksi Kelainan Janin

Lembaga Biologi Molekul Eijkman bekerja sama dengan Bagian Obstetri dan Ginekologi Fakultas Kedokteran Universitas Indonesia dan Rumah Sakit Cipto Mangunkusumo sejak November 2001 mengembangkan klinik genetic untuk mendeteksi secara dini sejumlah penyakit genetic yang menimbulkan gangguan pertumbuhan fisik maupun retardasi mental seperti antara lain, talasemia dan sindroma down. Kelainan ini bisa diperiksa sejak janin masih berusia beberapa minggu.

Talasemia adalah penyakit keturunan dimana tubuh kekurangan salah satu zat pembentuk hemoglobin (Hb) sehingga mengalami anemia berat dan perlu transfusi darah seumur hidup. Sedangkan,sindroma down adalah kelebihan jumlah untaian di kromosom 21 sehingga anak tumbuh dengan retardasi mental, kelainan jantung, pendengaran dan penglihatan buruk, otot lemah serta kecenderungan menderita kanker sel darah putih (leukemia).

Dengan mengetahui sejak dini, pasangan yang hendak menikah, atau pasangan yang salah satunya membawa kelainan kromosom, atau pasangan yang mempunyai anak yang menderita kelainan kromosom, atau penderita kelainan kromosom yang sedang hamil, atau ibu yang hamil di usia tua bisa memeriksakan diri dan janin untuk memastikan apakah janin yang dikandung akan menderita kelainan kromosom atau tidak, sehingga mempunyai kesempatan untukmempertimbangkan apakah kehamilan akan diteruskan atau tidak setelah mendapat konseling genetik tentang berbagai kemungkinan yang akan terjadi.

Di bidang talasemia, Eijkman telah memiliki catalog 20 mutasi yang mendasari talasemia beta di Indonesia, 10 di antaranya sering terjadi. Lembaga ini juga mempunyai informasi cukup mengenai spektrum mutasi di berbagai suku bangsa yang sangat bervariasi. Talasemia merupakan penyakit genetik terbanyak di dunia termasuk di Indonesia.

Pengembangan Vaksin Hepatitis B Rekombinan

Lembaga Biologi Molekul Eijkman bekerja sama dengan PT Bio Farma (BUMN Departemen Kesehatan yang memproduksi vaksin) sejak tahun 1999 mengembangkan vaksin Hepatitis B rekombinan, yaitu vaksin yang dibuat lewat rekayasa genetika. Selain itu Lembaga Eijkman juga bekerja sama dengan PT DiagnosiaDipobiotek untuk mengembangkan kit diagnostik.

Meringankan Kelumpuhan dengan Rekayasa RNA

Kasus kelumpuhan distrofi (Duchenne Muscular Dystrophy) yang menurun kini dapat dikurangi tingkat keparahannya dengan terapi gen. Kelumpuhan ini akibat ketidaknormalan gen distrofin pada kromosom X sehingga hanya diderita anak laki-laki. Diperkirakan satu dari 3.500 pria di dunia mengalami kelainan ini.

Dengan memperbaiki susunan ekson atau bagian penyusun RNA gen tersebut pada hewan percobaan tikus, terbukti mengurangi tingkat kelumpuhan saat pertumbuhannya menjadi dewasa.

Gen distrofin pada kasus kelumpuhan paling sering disebabkan oleh delesi atau hilangnya beberapa ekson pada gen tersebut. Normalnya pada gen atau DNA distrofin terdapat 78 ekson. Diperkirakan 65 persen pasien penderita DMD mengalami delesi dalam jumlah besar dalam gen distrofinnya. Kasus kelumpuhan ini dimulai pada otot prosima seperti pangkal paha dan betis. Dengan bertambahnya usia kelumpuhan akan meluas pada bagian otot lainnya hingga ke leher. Karena itu dalam kasus kelumpuhan yang berlanjut dapat berakibat kematian.

Teknologi rekayasa RNA seperti proses penyambungan (slicing) ekson dalam satu rangkaian terbukti dapat mengoreksi mutasi DMD. Bila bagian ekson yang masih ada disambung atau disusun ulang, terjadi perubahan asam amino yang membentuk protein. Molekul RNA mampu mengenali molekul RNA lainnya dan melekat dengannya.


Sumber Tulisan :

http://kambing.ui.ac.id/bebas/v06/Kuliah/SistemOperasi/2003/50/Bioinformatika.pdf

http://muannastasyiithoh.wordpress.com/2011/04/10/bioinformatika/

http://inilahjalanku.blogspot.com/2011/01/bioinformatika-dan-kegunaannya-untuk.html

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

%d blogger menyukai ini: